A látás segítségével érzékelik
Tartalom
Ha az érzékleteket aszerint osztályozzuk, hogy a tárgyról, eseményről milyen távolságból szerezhetünk információt, közeli és távoli érzékleteket tudunk megkülönböztetni.
A látás az utóbbiak közé tartozik.
- Optika és látórendszerek | Digitális Tankönyvtár
- Az érzékleti modalitások
- Látás 25 százalék
- A látás mechanizmusa A látott kép fogalma Érzékeljük a bennünket körülvevő világot, és az egyik legtöbb információt tartalmazó érzékelésünk a látás.
- Az emberi szem és a látás
- A háziméh érzékelése – Wikipédia
- Látás mínusz 8 az
- Látás – Wikipédia
A távoli érzékletek klasszikus meghatározásában kulcsfontosságú az a jellemző, hogy ezek segítségével anélkül is felfogjuk a tárgyak, események jellemzőit, hogy azoknak a közvetlen közelében kellene tartózkodnunk.
Bár a hallás és a látás is a távoli érzékelés kategóriájába tartozik, a látás olyan tárgyakat, eseményeket is közvetít, amelyeknek nincs hangjuk, vagy oly messze vannak, hogy a hangjukat nem halljuk.
A látás az érzékelési-észlelési folyamatok közül az egyik legfontosabb, úgynevezett vezető érzékleti modalitás. Olyan lényeges információkat is közvetít a világban jelen lévő tárgyakról, amelyeket a hallás nem vagy kevésbé képes közvetíteni.
Keresés űrlap
Ilyen a tárgyak színe, mérete, formája, téri helye, mozgása. Mindezeket a tulajdonságokat megfelelő részletességgel csak a fény képes közvetíteni, felfogásukra pedig különböző szemtípusok differenciálódtak az élővilágban.
Ezek receptorai végzik az átalakítást trandsz- dukciót.
A látás tárgyalása során mindvégig azzal foglalkozunk, hogy miként közvetíti a látás a világot, mi jellemzi a látási észlelést. Ebben a fejezetben röviden áttekintjük mindazt, ami nélkül nehezen értenénk meg a magasabb szintű folyamatokat. Elsőként arról lesz szó, hogy mi is a látható fény, miként alakul át a fény az emberi agy számára feldolgozható üzenetté, azaz akciós potenciálok sajátos mintázatává.
A fénytől a retináig A fény A fény az elektromágneses sugárzás egyik formája. A fénynek az emberi szem számára látható spektruma az elektromágneses sugárzásfajtáknak csak igen szűk tartományát jelenti. A további sugárzástípusok — csökkenő hullámhossz szerint — a váltóáram, a rádióhullám, a mikrohullám, az infravörös és az ultraibolya sugárzás, a röntgenhullám és a gamma-sugárzás.
Ezt szemlélteti a 3.
Az ilyen gyorsan terjedő sugárzással közvetített információnak az érzékelése-észlelése lehetővé teszi, hogy a tárgyakat, eseményeket megjelenésükkor minimális késleltetéssel, azaz azonnal lássuk. A fény része a környezetünket alkotó elektromágneses sugárzások tengerének.
- Mit jelent a 4 látás
Ennek a tengernek, bármilyen sugárzás-összetevőjét is vizsgáljuk, hullámai vannak; kicsik és nagyok, gyorsan és lassan ismétlődők. A fény tehát hullámtermészetű jel, és hasonlóan minden ilyen jelhez, néhány alapvető jellemzővel írható le. A hullám magassága az amplitúdó, a másodpercenként érkező hullámok száma a frekvencia.
Tartalomjegyzék
Magasabb frekvencia esetén például egy másodperc alatt jóval több hullám érkezik, mint alacsony frekvenciánál. Több hullám, azaz magasabb frekvencia esetén természetszerűleg a hullámcsúcsok távolsága kisebb lesz, azaz a fény hullámhossza kisebb lesz, mint alacsony frekvenciánál. A fény hullámainak ismétlődésére, eltérően a hanghullámoktól, ahol a frekvencia a konven- cionálisan használt jellemző lásd A hallás alapvető folyamatai című fejezetbena hullámhosszt használjuk mutatóként.
A hullámhossz tehát a fényenergia frekvenciájának vagy rezgésének mértéke, hullámhossznak nevezett egységekbe alakítva. A hullámhossz nem más, mint annak az útnak a hossza, amelyet a sugárzás egyes hullámok rezgések között megtesz. A hullámok távolságának mértékegysége a nanométer a méter milliomod része. A látható fény tartománya a és a nanométer közé esik.
Optika és látórendszerek
Az elektromágneses sugárzásfajták teljes tartománya, kinagyítva a látható fény szűk hullámhossztartományában a teljes spektrum A 3. Joggal elgondolkozhatunk azon, hogy mi lehet az oka annak, hogy pont erre a szűk tartományra rendezkedett be a Föld élőlényeinek a látószerve. Feltehetően fizikai és evolúciós okai vannak mindennek. Nem valószínű például, hogy a sokkal szélesebb tartományt alkotó ultraibolya vagy infravörös fény felfogására kialakuló szem jól biztosította volna az élőlények alkalmazkodását a környezethez.
Elsősorban azért nem, mert a rövidebb és a hosszabb hullámhosszú energia nem látássérült színvakság alkalmas a környezet tárgyainak, a látás segítségével érzékelik közvetítésére. A nanométernél rövidebb hullámhosszú fénnyel az a probléma, hogy a földi légkör molekulái jelentős részben elnyelik, ezért a világ tárgyaihoz el sem jut, és így vissza sem verődhet. A látható fénynél, tehát a nanométernél nagyobb hullámhosszal jellemezhető hullámokkal viszont az a probléma, hogy ezek részben vagy teljesen áthatolnak a tárgyakon, és nem verődnek visz- sza róluk ilyen az infravörös fény is.
Ez egyébként a mikrohullámú készülékek működésének fizikai alapja. A látható fény egy durván nanométeres tartományt ölel fel. Az ebbe a spektrumba tartozó hullámhosszak együtt alkotják az összetett fényt vagy fehér fényt.
A csak egy hullámhosszal jellemezhető sugárzás az úgynevezett tiszta vagy egyszerű fény. Ezekhez az emberi észlelőrendszer sajátos színélménye kapcsolható erről a Színlátás című fejezetben bőven lesz szóa hagyományos hét alapszín: a vörös, a narancs, a sárga, a zöld, a kék, az indigókék és az ibolyaszín.
Általános pszichológia 1-3. – 1. Észlelés és figyelem
Az alacsonyabb frekvenciájú sugárzás hosszabb hullámhossz, magasabb nanométerérték a spektrum vörös végéhez, a magasabb frekvenciájú sugárzás rövidebb hullámhossz, alacsonyabb nanométerérték a látás segítségével érzékelik spektrum ibolyaszín végéhez közelebbi tartományába tartoznak. Bár ez részben meg is határozza a szemek helyét a fejen, az evolúció során az élővilágban sokféle változat alakult ki.
A gerinceseknél például elég jó összefüggést lehet felfedezni a szemek elhelyezkedése és az állatfaj életmódja között. Ilyen például a ragadozók szeme, amely azonos síkban helyezkedik el, biztosítva ezzel azokat a kétszemes megoldási lehetőségeket, amelyek a mélységlátáshoz nélkülözhetetlenek erről a Tér- és mélységészlelés című fejezetben bőven lesz szó.
Navigációs menü
Tudjuk azt is, hogy egyes állatok pl. Négy izomköteg a szemgolyótól egyenesen, további két izomköteg pedig ferdén fut hátrafelé.
- Ablakok a világra III. – A szem nélkül is látók | Magyar Természettudományi Múzeum
- A fényérzékelés fejlődése
- Orvosi könyv a látásról
- Címlap Ablakok a világra III.
- Nézet táblázat kicsiknek
Az egyenes izmok a szemgolyó elülső részéhez közel, eltérő helyen tapadnak. Ha az egyenes szemizom összehúzódik, a szilárd tapadási felület koponya felé húzza el a szemgolyót, ha pedig elernyed, a szem eredeti helyzetébe fordul vissza.
Az emberi szem és a látás
A középső egyenes szemizom rectus medialis az orr közelében tapad, összehúzódásakor az orr felé forgatja el a szemet. Az oldalsó egyenes szemizom rectus laterális a külső szemzug felőli oldalon tapad, összehúzódásakor oldalirányba húzza a szemet. A felső egyenes szemizom rectus superior a szemgolyó tetején tapad, a látás segítségével érzékelik a szem felfelé emelkedik, a tekintet felfelé irányul. Ezzel ellentétes hatást okoz a szemgolyó függőleges alsó oldalán tapadó alsó szemizom rectus inferiormelynek összehúzódása lesüllyeszti a szemet, a tekintetet lefelé irányítja.
A háziméh érzékelése
Oldalirányú elnézésnél mindkét szem ugyanolyan mértékben és ugyanazon irányban mozdul el. Balra nézéskor a jobb szem középső izma és a bal szem oldalsó izma húzódik össze, a jobb szem oldalsó izma és a bal szem középső izma pedig elernyed. Szemizmok és szemmozgásirány Az ember különösen gyorsan tudja mozgatni a szemét, tekintetét töredék másodperc alatt tudja egyik tárgyról a másikra irányítani.
Amikor ennek a könyvnek a lapjait olvassuk, az a benyomásunk támadhat, hogy szemünk igen gyors tempóban, balról jobbra haladva, finoman végigpásztázza az egymást követő sorokat. Mint korábban jeleztük, az önmegfigyelés tévútra vezet.
Az emberi szem és a látás
Szemünk nem úgy gyűjti be az információkat, mint azt tapasztalatainkból következtetve gondolnánk. Szemünk mozgását olvasáskor nem a folyamatos pásztázás jellemzi, hanem megállások, szünetek és újraindulások sorozatát produkálják szemmozgató izmaink.
E sorokat olvasva szemünk nagy pontossággal lép tovább a kívánt szóra, szakaszra.
Ezt három-három pár szem körüli extraokuláris izom működése teszi lehetővé. Az összehúzódó izmok abban az irányban mozdítják el a szemgolyót, amely részén az izom egyik vége tapad. Az izmok másik vége stabil, nem mozgó felülethez szemgödör kapcsolódik.
A mozgás mértéke az összehúzódás erősségétől, iránya pedig attól függ, hogy hol tapad a szemgolyón és a szemgödrön, illetve milyen a látás segítségével érzékelik tesz a többi izom.
A két szemmel való látásnál egy különleges mechanizmus biztosítja, hogy egy közeli tárgyra irányulhasson mindkét szem. Bármily furcsa, ehhez a két szemnek ellentétes irányban kell körmozgást végeznie.
Ezt a többirányú, egész pontosan ellentétes irányú forgatást nevezzük vergens szemmozgásnak vagy vergenciá- nak.
Kétperces online látásvizsgálat
A vergens mozgás során a bal szem jobbra, a jobb szem pedig balra fordul, azaz mindkét szem befelé, az orr irányában mozog. A közvetlenül előttünk lévő tárgyra irányított tekintést szolgáló szemmozgásformát konvergens szemmozgásnak hívjuk. A szemmozgások dinamikája A szemmozgások jellegzetes mozgásdinamikájuk szerint is osztályozhatók. Az egyik szem- mozgástípust a nagy sebesség jellemzi, a látás segítségével érzékelik igen gyorsan képes tekintetünk egyik tárgyról a másikra váltani.
A másikfajta szemmozgás sebessége széles tartományban változhat, jellegzetessége azonban nem ez, hanem az, hogy a mozgó célok folyamatos követését biztosítja.